

# 2017 Annual Drinking Water **Quality Report**

# DIANA Special Utility **District**

Phone No: 903-663-4837

# **Our Drinking Water Meets or Exceeds All Federal (EPA) Drinking Water Requirements**

This report is a summary of the quality of the water we provide our customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the following pages. We hope this information helps you become more knowledgeable about what's in your drinking water.

### WATER LOSS REPORT:

In the water loss audit submitted to the Texas Water Development Board for the time period of January-December 2017, our system reported an estimated 20,785,300 gallons of water loss. If you have any questions about the water loss audit please call the Diana SUD business office at 903-663-4837.

# **Public Participation Opportunities**

Second Monday of each month

7:00 p.m. Time:

Location: Diana Special Utility District

1716 US Highway 259 South Diana, Texas

Phone: (903) 663-4837

To learn about future public meetings (concerning your drinking water), or to request to schedule one,

please call us.

# **SPECIAL NOTICE**

# Required language For All **Community Public Water Supplies:**

Infants, some elderly or immunocompromised, persons such as those undergoing chemotherapy; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water.

Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at:

(1-800-426-4791).

Source of Drinking Water: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells.

As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activi-

Contaminants that may be present in source water include:

- · Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment paints, septic systems, agricultural livestock operations, and wildlife.
- · Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- · Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic
- · Radioactive contaminants, in which can be naturally-occurring or be the result of oil and gas production and mining activities.

# **Information about Source Water Assessments:**

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this consumer Confident Report. For more information on source water assessments and protection efforts at our system, contact the General Manager, Susan Whitfield at 903-663-4837.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL:

http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc=

Further details about sources and source-water assessments are available in Drinking Water Watch at the following LIRI: http://dww.tceg.texas.gov/DWW

| Source Water Name: | Location:                   | Type of Water: | Report Status:  | Susceptibility Assessment: |
|--------------------|-----------------------------|----------------|-----------------|----------------------------|
| Carrizo-Wilcox     | EP001-12248 PARROTT RD      | GW             | MINERALS/METALS | MEDIUM/HIGH                |
| Carrizo-Wilcox     | EP002-1576 ZINNIA RD        | GW             | MINERALS/METALS | MEDIUM/HIGH                |
| Carrizo-Wilcox     | EP003-1976 US HWY 259 S     | GW             | MINERALS/METALS | MEDIUM/HIGH                |
| Carrizo-Wilcox     | EP004-1387 POP'S LANDING RD | GW             | MINERALS/METALS | HIGH/MEDIUM                |
| Carrizo-Wilcox     | EP005-2834 US HWY 259 N     | GW             |                 |                            |
| Carrizo-Wilcox     | EP006-12750 SMILAX RD       | GW             | MINERALS/METALS | MEDIUM/MEDIUM              |
| Carrizo-Wilcox     | EP007-2772 MYRTLE RD        | GW             | MINERALS/METALS | MEDIUM/HIGH                |
| Carrizo-Wilcox     | EP008-10433 FM 1972         | GW             |                 |                            |

# **ALL Drinking Water May** Contain Contaminants.

When drinking water meets federal standards, there may not be any health benefits to purchasing bottled water or point of use devices.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants.

The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at:

(1-800-426-4791)

# **Secondary Constituents**

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color, and odor problems.

The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA.

These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

# **DEFINITIONS**

#### Maximum Contaminant Level (MCL)

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

#### Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. MGLG's allow for a margin of safety.

# Maximum Residual Disinfectant Level (MRDL)

The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

### Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known, or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial

mrem: Millirems per year (a measure of radiation absorbed by the body).

ppb: Micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

na: Not applicable

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

#### ABBREVIATIONS

NTU Nephelometric Turbidity Units

MFL million fibers per liter (a measure of asbestos)

ppm milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

- ppb micrograms per liter or parts per billion or one ounce in 7,350,000 gallons of water.
- pCl/L picocuries per liter (a measure of radioactivity) ppt parts per trillion, or nanograms per liter (ng/L).
  - ppq parts per quadrillion, or picograms per liter (pg/L).

# ABOUT THE FOLLOWING TABLES

The tables that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water.

The U.S. EPA requires water systems to test for up to 97 contaminants.

#### Maximum Residual Disinfectant Level

| Year | Disinfectant                    | Average<br>Level | Minimum<br>Level | Maximum<br>Level | MRDL | MRDLG | Unit of<br>Measure | Source of Disinfectant                 |
|------|---------------------------------|------------------|------------------|------------------|------|-------|--------------------|----------------------------------------|
| 2017 | Chloramine/Chlorine<br>Residual |                  | 0.38             | 4.0              | 4    | 4     | ppm                | Disinfectant used to control microbes. |

#### **Lead and Copper**

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

| Lead and<br>Copper | Date<br>Sampled | MCLG | Action<br>Level (AL) | 90th<br>Percentile | No. Sites<br>Over AL | Units | Violation | Likely Source of Contamination                                                                          |
|--------------------|-----------------|------|----------------------|--------------------|----------------------|-------|-----------|---------------------------------------------------------------------------------------------------------|
| Copper             | 2016            | 1.3  | 1.3                  | 0.35               | 0                    | ppm   | N         | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. |
| Lead               | 2016            | 0    | 15                   | 1.58               | 0                    | ppb   | N         | Corrosion of household plumbing systems; Erosion of natural deposits.                                   |

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

# **Regulated Contaminants**

| Disinfectants &<br>Disinfection<br>By-Products | Collection<br>Date | Highest<br>Level<br>Detected | Range of<br>Levels<br>Detected | MCLG                     | MCL | Units  | Violation | Likely Source of Contamination                                                                                                   |
|------------------------------------------------|--------------------|------------------------------|--------------------------------|--------------------------|-----|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------|
| Haloacetic Acids<br>(HAAS)                     | 2017               | 34                           | 24.7 - 35.8                    | No goal for<br>the total | 60  | ppb    | N         | By-product of drinking water disinfection                                                                                        |
| Total Trihalomethanes<br>(TTHM)                | 2017               | 25                           | 14 - 39.1                      | No goal for<br>the total | 80  | ppb    | N         | By-product of drinking water disinfection                                                                                        |
| Inorganic<br>Contaminants                      | Collection<br>Date | Highest Level<br>Detected    | Range of Levels<br>Detected    | MCLG                     | MCL | Units  | Violation | Likely Source of Contamination                                                                                                   |
| Barium                                         | 2017               | 0.046                        | 0.041 - 0.046                  | 2                        | 2   | ppm    | N         | Discharge of drilling wastes; Discharge<br>from metal refineries; Erosion of natural<br>deposits.                                |
| Chromium                                       | 2016               | 1.8                          | 0 - 1.8                        | 100                      | 100 | ppb    | N         | Discharge from steel and pulp mills;<br>Erosion of natural deposits                                                              |
| Cyanide                                        | 2017               | 62.1                         | 0-62.1                         | 200                      | 200 | ppb    | N         | Discharge from plastic and fertilizer factories. Discharge from steel/metal factories.                                           |
| Fluoride                                       | 2017               | 0.776                        | 0.0683 - 0.776                 | 4                        | 4.0 | ppm    | N         | Erosion of natural deposits; Water additive<br>which promotes strong teeth; Discharge<br>from fertilizer and aluminum factories. |
| Nitrate<br>(measured as Nitrogen)              | 2017               | 0.238                        | 0.047 - 0.238                  | 10                       | 10  | ppm    | N         | Runoff from fertilizer use; Leaching from<br>septic tanks, sewage; Erosion of natural<br>deposits.                               |
| Nitrite<br>(measured as Nitrogen)              | 07/01/2015         | 0.13                         | 0 - 0.13                       | 1                        | 1   | ppm    | N         | Runoff from fertilizer use; Leaching from<br>septic tanks, sewage; Erosion of natural<br>deposits.                               |
| Radioactive<br>Contaminants                    | Collection<br>Date | Highest Level<br>Detected    | Range of Levels<br>Detected    | MCLG                     | MCL | Units  | Violation | Likely Source of Contamination                                                                                                   |
| Beta/Photon Emitters                           | 2016               | 5.4                          | 0 - 5.4                        | 0                        | 50  | pCi/L* | N         | Decay of natural and man-made deposits                                                                                           |
| Combined<br>Radium 226/228                     | 2016               | 3.3                          | 1.5 - 3.3                      | 0                        | 5   | pCi/L  | N         | Erosion of natural deposits                                                                                                      |
| Gross Alpha Excluding<br>Radon and Uranium     | 2016               | 3.3                          | 0-3.3                          | 0                        | 15  | pCi/L  | N         | Erosion of natural deposits                                                                                                      |

\*EPA considers 50 pCi/L to be the level of concern for beta particles

#### Secondary and Other Constituents Not Regulated (No associated adverse health Effects)

| Year or<br>Range | Constituent                  | Average<br>Level | Minimum<br>Level | Maximum<br>Level | Secondary<br>Limit | Unit of<br>Measure | Source of Constituent                                                                                   |
|------------------|------------------------------|------------------|------------------|------------------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------|
| 2016             | Aluminum                     | 0.04             | 0.005            | 0.09             | 0.05               | ppm                | Abundant naturally occurring element.                                                                   |
| 2016             | Calcium                      | 5.3              | 1.6              | 8.7              | N/A                | ppm                | Abundant naturally occurring element.                                                                   |
| 2014             | Chloride                     | 65               | 21               | 112              | 300                | ppm                | Abundant naturally occurring element<br>used in water purification; by-produc<br>of oil field activity. |
| 2016             | Copper                       | 0.001            | 0.001            | 0.004            | 1                  | ppm                | Corrosion of household plumbing systems; erosion of natural deposits, leaching from wood preservatives. |
| 2014             | Hardness as<br>Ca / Mg       | 7                | 7                | 17               | N/A                | ppm                | Naturally occurring calcium and magnesium.                                                              |
| 2016             | Magnesium                    | 1.8              | 0.4              | 3.2              | N/A                | ppm                | Abundant naturally occurring element.                                                                   |
| 2016             | Manganese                    | 0.002            | 0.001            | 0.005            | 0.05               | ppm                | Abundant naturally occurring element.                                                                   |
| 2011             | P. Alkalinity as<br>CaCO3    | 6                | 2                | 11               | N/A                | ppm                | Naturally occurring soluble mineral salts.                                                              |
| 2011             | рН                           | 8.6              | 8.2              | 9.0              | > 7.0              | units              | Measure of corrosivity of water.                                                                        |
| 2016             | Sodium                       | 124              | 30               | 239              | N/A ppm            |                    | Erosion of natural deposits; by-<br>product of oil field activity.                                      |
| 2014             | Total Alkalinity<br>as CaCO3 | 339              | 339              | 339              | N/A ppm            |                    | Naturally occurring soluble mineral salts.                                                              |
| 2011             | Total Dissolved<br>Solids    | 432              | 318              | 617              | 1000 ppm           |                    | Total dissolved mineral constituents in water.                                                          |
| 2016             | Zinc                         | 0.08             | 0.005            | 0.087            | 5                  | ppm                | Moderately abundant naturally occurring element; used in the meta industry.                             |

Total Coliform

REPORTED MONTHLY TESTS FOUND NO COLIFORM BACTERIA.
REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA